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ABSTRACT 

This paper proposes to perform Minimum Phone Error 
(MPE) model training on merged acoustic units for tran-
scribing Mandarin-English code-switched lectures with 
highly imbalanced language distribution. Some of the acous-
tic events in Mandarin and English may have very similar 
characteristics, so the states or Gaussian mixtures represent-
ing them can be merged with identical shared parameters. 
When MPE is performed afterwards, these merged identical 
states or Gaussian mixtures can form a compact acoustic 
unit set. In this way MPE can better discriminate the acous-
tic units of both languages, because similar units are merged 
while distinct units are differentiated. Significant improve-
ments in recognition accuracy were observed in the prelimi-
nary experiments on real-world bilingual code-switched 
lecture corpus recorded at National Taiwan University.  

Index Terms— MPE, bilingual, merging, discrimina-
tive, code-switching 

1. INTRODUCTION 
In the globalized world today, many people are using more 
than a single language in their daily lives. As a result, very 
often the speech signals include more than one language. 
This is why great effort has been made to try to extend exist-
ing speech recognition technologies primarily developed for 
monolingual tasks to consider multilingual environments 
[1][2]. A major concern here is the phoneme sets of differ-
ent languages. Very often some phonemes are shared by 
different languages; some phonemes in different languages 
sound similar, but slightly different; and some other pho-
nemes are unique for specific languages. This makes acous-
tic modeling and lexicon construction difficult. Usually the 
similarity and differences between the phonemes and the 
unique characteristics for some phonemes are difficult to 
measure quantitatively. Many approaches have been pro-
posed to merge acoustic units on different levels to handle 
these problems [3][4][5][6][7].  
In general, bilingual speech can be classified into two cate-
gories. The first one is inter-sentential switching, in which 
the speaker switches languages from sentences to sentences. 
For example, the sentence, “It’s fine. 謝謝你(Thank you).”, 
where the first sentence is in English, while the second in 

Chinese. The other is intra-sentential switching, also re-
ferred to as code-switching in this paper, in which the lan-
guages are switched from words to words. For example, the 
sentence “這個 equation 很複雜. (This equation is very 
complicated.)”, in which the word “equation” in the guest 
language of English is embedded in a sentence in the host 
language of Chinese. The latter case of code-switching is 
very common for speakers with non-English native lan-
guage (with English as the guest language and the non-
English native language as the host), especially when they 
speak very good English and many English words are not 
yet properly translated into their native languages. 
An extra difficulty for the above second category of code-
switched bilingual speech is the highly imbalanced language 
distribution, i.e., in such cases there are much more host 
language data but very limited guest language data. This 
makes not only acoustic modeling for the guest language 
difficult, but the recognizer usually tends to take most 
speech as in the host language. This second category of 
code-switched bilingual speech is the target of this paper. 
Another distinguishing feature for the above second catego-
ry of code-switching environment is the issue of language 
identification [8][9]. Since the language may be switched 
back and forth from word to word within an utterance and 
this makes the language identification harder [9]. In addition, 
in many cases of such code-switched bilingual speech, it 
may be more important to correctly transcribe the words in 
the guest language than those in host language, very often 
those words in the guest language are the key terms for 
speech understanding.  
In this paper, we applied minimum phone error (MPE) [10] 
training technique to code-switched speech mentioned 
above. Similar results were reported earlier [11], in which it 
was found that MPE brought relatively limited improvement 
to code-switched speech. In this paper, we present possible 
reasons for the limited improvement and propose to apply 
MPE on acoustic units merged on the state and Gaussian 
levels  

2. CODE-SWITCHED TESTING ENVIRONMENT 
The corpus used for the experiments reported here was the 
recorded lecture of courses offered in National Taiwan Uni-
versity. The speech is very spontaneous, belonging to the 



above second category of code-switching, i.e., in host lan-
guage of Mandarin and guest language of English, with 
highly imbalanced Mandarin / English percentage ratio. The 
detailed description of experimental data is listed in Table 1. 
We see in the last row of this table the percentage of English 
(guest language) for this bilingual corpus is only 15.2%, or 
roughly 1.5 hours in the training set. Such a highly imbal-
anced data distribution makes the recognition task very dif-
ficult, especially the accuracy for the guest language words 
turn out to be very low, as will be shown below. 

 
Table 1. Details for the Target Corpora. 

3. BASELINE EXPERIMENT ON MINIMUM PHONE 
ERROR (MPE) TRAINING ON THE TARGET 

CORPUS 
Maximum likelihood (ML) criterion was conventionally 
adopted as a common approach for estimating acoustic 
model parameters. Discriminative training approaches such 
as Minimum Error (MPE) [10] training has been popularly 
used in recent years to discriminate the signal feature distri-
butions for similar acoustic units. MPE training takes the 
competing candidates in the decoded lattices as additional 
information into consideration and tries to distinguish these 
competing candidates by adjusting the corresponding model 
parameters. This is different from the ML criterion, which 
only tries to maximize the likelihood for each respective 
candidate without considering the competing models. 
In general, MPE outperformed ML in most speech recogni-
tion systems in the most cases. However, this is not neces-
sarily true for the code-switched bilingual speech task con-
sidered here. Because of the high degree of ambiguity be-
tween similar acoustic units for the two different languages, 
MPE may actually over-discriminate some very similar 
acoustic units because these units are labeled as different in 
different languages. For example, the plosive /b/ in Manda-
rin (/CH_b/) and in English (/EN_B/) are very similar, espe-
cially in the code-switched corpus considered they were 
produced by the same speaker. However, the standard MPE 
training procedure tries to differentiate the models for these 
two phonemes by increasing the distance between them 
since they are differently labeled in different languages. 
This may be the reason why MPE did not bring expected 
recognition performance improvement for multilingual tasks 
[11] as usually obtained in monolingual task. This is also 
consistent with the observation in the testing environment as 
described in Table 1. The results for the baseline experiment 
are shown in Fig. 1. 

 
Figure 1: ML / MPE Results for the Target Corpora (Acc.) 

Word accuracy for English, character accuracy for Mandarin 
and summation for overall were shown in Fig. 1. In Fig. 1, 
the recognition accuracy for English part is much lower in 
both ML and MPE case, obviously due to the highly imbal-
anced nature of code-switched bilingual corpus. More im-
portantly, applying MPE training did not bring any im-
provement but instead the performance degraded monoton-
ically as more iteration was performed. The degradation for 
English part is much faster than Mandarin, probably also 
due to the data-imbalanced nature. As mentioned above, 
English words here are usually key words, therefore it is 
definitely an important issue here.  

4. PROPOSED APPRAOCHES 
To handle the problem mentioned above, we proposed to 
merge similar acoustic units on state and Gaussian levels so 
they share the same parameters and become identical. MPE 
is then applied to differentiate the distinct acoustic units.  

4.1. Complete System Architecture 
The complete system flow chart for the proposed approach 
of MPE training on merged acoustic units is in Fig. 2.  

 
Figure 2: Proposed System Architecture 

In Fig. 2, the baseline acoustic model set trained with bilin-
gual corpus with the original bilingual phoneme set, used as 
the initial model, is at the upper left corner labeled as 
“HMMs (Full)”. Distances between model units on two dif-
ferent levels, state or Gaussian, are then calculated for mod-
el units in “HMMs (Full)” and a mapping table is obtained, 



as in the lower left corner of Fig. 2. In this work, since Eng-
lish is the guest language, for every English unit, the best 
mapped Mandarin unit with minimum distance is obtained. 
It is possible that many English model units are mapped to 
the same Mandarin model unit.  
It is certainly reasonable to merge directly the acoustic 
models for English and Mandarin on the phoneme level. 
However, there are some constraints that limit the perfor-
mance. Considering the linguistic nature of the two lan-
guages considered here, Mandarin is a tonal language while 
English is a stress-timed language. The different linguistic 
natures make it much more difficult to merge English and 
Mandarin acoustic units on the phoneme level (triphones) 
than to merge them on the lower levels of states or Gaussi-
ans. In fact, it has been found previously that merging 
acoustic units on the state and Gaussian levels offered much 
better improvements than merging on the phoneme level for 
the Mandarin / English task [3][4][6].  
The next step is to perform acoustic unit merging on the set 
“HMM (Full)” based on the acquired mapping table. This 
merging process is started from unit pairs with minimum 
distance and repeated until desired number of merged Eng-
lish units is reached. The model acquired is at the upper 
right corner of Fig. 2, labeled as “HMMs (Merged)”. To 
reach a better likelihood for the new model configuration for 
the training data, another ML estimation process for the 
merged model is performed, as shown below “HMMs 
(Merged)” in Fig. 2. This ML process produces a set of 
acoustic models labeled as “HMMs (MLed)” shown at the 
lower middle of Fig. 2. Although MPE was not performed 
yet, sharing of training data for the acoustic units is helpful 
for better modeling of the English model units. Therefore, 
better recognition accuracy is expected with this set of mod-
els as well [3]. Now because the similar model units (Gauss-
ians or states) have been merged and made identical, the 
ambiguity between distinct acoustic units is largely reduced. 
So we applied MPE training to this model set, and the model 
set obtained after MPE training, labeled as “HMMs 
(MPEed)” at the lower right corner of Fig. 2, is to be used 
for transcribing the bilingual speech.  

4.2. Kullback–Leibler Divergence 
KL Divergence is popularly used as estimation between 
distances between two stochastic distributions. The KL Di-
vergence of two Gaussian distributions is, 

𝐾𝐿𝐷𝑖𝑣൫𝑃, 𝑃൯ =
1
2 [  𝑙𝑛 ቆ

𝑑𝑒𝑡  (𝛬)
𝑑𝑒𝑡  (𝛬)

ቇ + 𝑡𝑟𝑎𝑐𝑒൫𝛬ିଵ𝛬൯ 

+൫𝜇 − 𝜇൯
்𝛬ିଵ൫𝜇 − 𝜇൯ − 𝑁  ]  ,            (1) 

where µμ୧,୨ and Λ୧,୨ are mean vector and covariance matrix of 
the Gaussian distributions 𝑃, and N is the dimensionality of  
𝑥. Since KL Divergence is asymmetric, an alternative sym-
metric distance is defined and used in this work, 

𝐷൫𝑃, 𝑃൯ = 𝐾𝐿𝐷𝑖𝑣൫𝑃, 𝑃൯ + 𝐾𝐿𝐷𝑖𝑣൫𝑃, 𝑃൯  .                    (2) 

4.3. State Level Distance 
The state of HMMs can be considered as sequential compo-
nents of the phonemes, each with a relatively steady feature 
distribution, which can be physically interpreted as the fea-
ture distribution produced by a certain acoustic event due to 
a distinct vocal tract shape. Since speech production by 
physical structure of vocal tract is universal across different 
languages, state may be a good unit to analyze cross-lingual 
similarity for acoustic modeling. Because the state duration 
is usually very short and not identifiable by human percep-
tion, in this work, we first model each state by a single 
Gaussian distribution, and then calculate the distance be-
tween states using the symmetric KL Divergence based on 
these single Gaussians as in (2), 

𝐷ௌ൫𝑆, 𝑆൯ = 𝐷൫𝐺,𝐺൯  ,                                                    (3) 
where G୧ is the single Gaussian representing state S୧ . This 
approach has been shown to be useful in previous work 
[3][4].  

3.3. Gaussian Level Distance 
Since there can be many Gaussians in a state, Gaussian units 
describe the finer structure of the state units. Previous work 
has shown that Gaussian level mapping is very useful for 
identifying similar model units [3][7]. The calculation of 
distance between two Gaussians is simply based on the 
symmetric KL Divergence formula in (2),  

𝐷ீ൫𝐺, 𝐺൯ = 𝐷൫𝐺, 𝐺൯  .                                                  (4) 
However, the physical interpretation of Gaussian units is 
much weaker. The similarity between two Gaussians of two 
states does not imply the similarity between two states, since 
a Gaussian is only a fine structure component of the feature 
distribution of a state. However, merging similar Gaussians 
makes sense because the Gaussians can be enhanced by 
sharing the data, and similar Gaussians can be made identi-
cal and not differentiated by MPE. 

5. EXPERIMENT 

5.1. Experiment Setup 
The corpus used for experiments here are reported in section 
2.1 and listed in Table 1. The acoustic models used are in 
the format of state-tied triphone models. The bilingual lexi-
con used here included English words, Chinese words and 
all commonly used Chinese characters. Target-domain relat-
ed corpora including frequency counts were used for both 
English and Chinese word selection for the lexicon. Chinese 
words were also generated by segmenting a large corpus 
using PAT-Tree base approaches [3]. We used the Kneser-
Ney tri-gram model, started with a background model and 
then adapted with the transcription of the training set for the 
target lecture here.   
The way the recognition accuracy was evaluated followed 
the earlier works [3], [12]. That is, when aligning recogni-



tion results with the reference transcriptions, insertions, de-
letions, substitutions were evaluated respectively for each 
language and summed up for overall evaluation. The basic 
unit for alignment is character for Mandarin and word for 
English [3][12], so the accuracies reported here are with 
respect to characters for Mandarin and to words for English. 

5.2. Experimental Results 
We conducted experiments for both ML estimation and 
MPE training by merging acoustic units on states and 
Gaussians for different percentages of English units being 
merged with Mandarin units. The experimental results for 
state-level merging are shown in Fig. 4. The vertical axis is 
the recognition accuracy while the horizontal axis represents 
the percentage of English state being merged. The red curve 
is for English words using ML estimation only. We can see 
that with more English states being merged, the accuracy for 
English words with ML estimation is improved continuous-
ly in general. Clearly this improvement was brought by da-
ta-sharing, which makes it possible to use Mandarin data 
and English data jointly to estimate the state parameters. 
The orange curve is then the result for MPE training with 
state merging. It is clear that the accuracy also increase 
when more English units were merged. More importantly, 
now the MPE results obviously outperformed ML results 
with state merging just as the monolingual case in general. 
This is quite different from those seen in Fig. 1, where MPE 
training in fact degraded the accuracy. This is achieved by 
unit merging. For Mandarin part, on the other hand, MPE 
offered only very limited improvement over ML, and both 
ML and MPE cases are only slightly influenced by state 
merging. It seems that MPE primarily offered improvements 
for the weak or confusing models, while in the case here 
most weak or confusing models are of English. This may be 
the reason why English was improved but Mandarin re-
mained almost unchanged. 

 
Figure 3: ML and MPE Results by State Merging (Acc.) 

For Gaussian-level merging, the corresponding results are 
shown in Fig. 4. Very similar situation as in Fig. 3 can be 
observed. Therefore, the ambiguity in bilingual acoustic 
units is reduced by unit merging, on either state or Gaussian 
level, which makes it possible for MPE to offer improve-
ments in accuracy. In the results shown in Fig. 3 and 4, only 

one iteration was performed for MPE. Better improvements 
may be possible with more iteration. 

 
Figure 4: ML and MPE Results by Gaussian Merging (Acc.) 

Table 2 gives the detailed accuracies. Row (1) and (2) are 
baseline results using ML and MPE training. In this case 
MPE did not outperform ML because the reason mentioned 
above. Rows (3) and (4) are results with state merging for 
all English states merged, or 100% merged, corresponding 
to the last points in Fig. 3. We see that for English words 
ML outperformed the baseline results by roughly 5.5% ab-
solute, while MPE did with roughly 7.3% absolute. But it is 
important that MPE now outperformed ML with state merg-
ing by roughly 1.8% absolute. indicating the ability of re-
ducing ambiguity by unit merging. Rows (5) and (6) are 
results with Gaussian merging, the trend is very similar to 
rows (3) and (4). But Gaussian level merging was actually 
significantly better than state level merging. For English 
words the difference was roughly 1.6% absolute. This indi-
cates that Gaussian is a very good acoustic unit for merging 
for the problem here, capable of enabling both data-sharing 
and ambiguity-reduction at the same time.  

 
Table 2. Overall Experimental Results (Acc.) 

6 CONCLUSION 
The distinct nature of code-switched speech is an important 
issue in the globalized world today, and code-switched 
speech is actually very frequently observed in the daily lives 
of many people. In this paper, acoustic unit merging was 
proposed to help MPE training for transcribing code-
switched speech. This approach considers the issues of both 
data sufficiency and ambiguity between models across dif-
ferent languages. Experimental results showed that the pro-
posed approach actually significantly improved the recogni-
tion accuracy, especially for the guest language of English, 
whose percentage of occurrence was much lower than the 
host language of Mandarin. 
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