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Abstract—Query classification (QC) has been widely studied to
understand users’ search intent. For e-commerce search queries,
users typically search for either a specific product or a category
of products. In both cases, a query can be associated with a
category label that belongs to a taxonomy tree describing the
items in the catalog. However, product-related search queries are
typically short, ambiguous, and continuously changing depending
on seasonal trends and the introduction of new products over
time. Traditional supervised approaches to e-commerce QC are
not feasible due to the high cost of manual annotation and
the high volume of traffic on e-commerce search engines. In
this work, we introduce an unsupervised method to collect
large amounts of query classification data using user’s implicit
click feedback. We obtain a large multi-label dataset containing
403,349 unique queries from 2,085 categories. We compare and
contrast different state-of-the-art text classifiers and demonstrate
that an ensemble of linear SVMs models achieves a micro-F1
score of 0.60 and 0.82 at leaf and top level, respectively.

Index Terms—Query classification, Taxonomy categorization,
Multi-label classifier

I. INTRODUCTION

Query understanding (QU) is core to search engines to
infer the precise intent expressed in users’ queries and retrieve
relevant content to improve user’ satisfaction and e-commerce
conversion rates. QU is a challenging task since queries are
typically short, ambiguous, and domain-dependent. A first
level of query understanding includes query classification (QC)
defined as the task of classifying queries into single or multiple
predefined target categories. QC can boost relevance in content
search by predicting which category the query belongs to
and passing the hypothesis to the search engine as ranking
signal. Such capability is crucial, especially in the e-commerce
domain where content search is mostly directed to specific
products that are typically categorized into a taxonomy tree.

Recently, an empirical study of the queries and search
behavior of users in e-commerce search has been done by ana-
lyzing the search log [14]. With k-Means clustering algorithm
[9], the analysis results show that e-commerce queries can be
categorized into five different categories, each with distinctive
search behaviors. These five categories form a taxonomy and
shed some light on how customized search technologies can
be developed for each type of search queries to improve search
engine quality.
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One of the early work in this area is the ACM KDDCUP
2005 competition [11]. The task was to classify 800,000
search queries into 67 hierarchical target categories where
each query can belong to more than one category at the
same time. The challenge only provided a small set of 111
queries for training, each annotated with up to five of the 67
categories, and 800 queries randomly selected from the corpus
and annotated by following the same annotation schema. The
winning solution [12] combined with its later modification [13]
built a bridging classifier on an intermediate taxonomy offline
and adopted category selection for online classification. This
competition revealed a number of challenges related to the
task: 1) the lack of annotated data due to the cost of human
annotations and the large scale of query data that makes
coverage almost impossible; 2) the ambiguity of search queries
due to multiple users’ intents expressed by the same words.

To address the two challenges above, we introduce a gen-
eral unsupervised data collection method that automatically
generates QC data from four months of query logs obtained
from Rakuten! using user’s implicit feedback from clicks.
We captured the queries ambiguity by assigning multi-label
annotations to queries that are interpreted differently by users.

When considering a web-scale product catalog, queries are
unlikely to cover the entire list of products in the catalog.
Typically, the more popular products are retrieved and click-
rates are unevenly distributed across the catalog taxonomy
categories. To mitigate the data sparseness, we adopted a
taxonomy tree pruning strategy by merging leaf nodes with
a limited number of clicks with their parent node. In such a
way, 403,349 queries are collected, labeled with 2,085 target
categories in total where no human annotator is involved.
Furthermore, we compare and contrast several traditional and
state-of-the-art text classifiers, including logistic regression,
SVMs [4], XGBoost [2], fastText [8] and attention-based
CNNs [17].

II. DATA COLLECTION

In this section, we describe our QC data collection approach
and product taxonomy tree pruning strategy in the e-commerce
domain.

Uhttps://www.rakuten.com/



A. Clickstream Data

A session S; (or visit) is a chronological sequence of
recorded user’s actions including search, click, add-to-cart,
purchase, and so on. A user may interact with the search
engine m times in a single .S;. For each query ¢; (1 < j < m),
where a user may retrieve n; products {p;1,pj2,...Djn, }»
we collect all the query and product pairs (g;,p,r) where
1 < k < n; that have been selected by mouse clicks, added
into the shopping cart, or purchased. If the time interval
between two actions in a single session is more than 30
minutes, we divide them into two separate sessions. After
performing the above collecting process across all the sessions,
we obtain a set of query and product pairs along with their
cumulative click frequencies.

The next step is to leverage the click information to as-
sociate product category labels to each query. A simple, yet
effective way, is to assign the query category label to the
taxonomy category associated to the selected product. This
is a reasonable approximation under the assumption that the
user’s behavior is coherent with the selection of the retrieved
product.

B. Product Taxonomy

A product taxonomy is a tree-based hierarchical represen-
tation where each node is mapped into a product category
from a product catalog. In a typical e-commerce setting,
merchants are responsible to match their products with an
existing category defined as leaf in the taxonomy tree. The
sequence of nodes from the tree root to the leaf represents
the semantic labels of a product and it is often referred as
attribute-based breadcrumbs [7]. With the taxonomy tree, a
1-to-1 mapping is conducted to transform each product to its
corresponding path, i.e., label. As a result, previous (query,
product) pairs are converted to (query, category/label) pairs.
As mentioned before, each unique query may have multiple
labels.

While e-commerce catalogs collect a wide number of
products classified by a fine-grain taxonomy tree, the actual
product retrieval process is driven by user’s needs and does
not necessarily reflect the initial taxonomy design. In this
scenario, nodes such as Sports — Cycling — Bike Acces-
sories — Child Seats and Sports — Cycling — Bike Acces-
sories — Bike Fenders are unlikely to be visited by users due
to small number of items categorized in the taxonomy leaf.
Therefore, it is intuitive to merge these two nodes with their
parent nodes, Sports — Cycling — Bike Accessories. In this
way, products belonging to the removed leaf still get a chance
to be categorized in the parent node as more general category.

Fig. 1 shows a small part of the entire catalog taxonomy
where the number below each node is the sum of click fre-
quencies for all the queries associated to that node. Due to the
popularity of certain product categories, the node frequency is
unevenly distributed. To re-balance the tree, we recursively
merge less popular nodes with their parents if the summation
of cumulative click frequencies of a node is less than a certain

threshold. In practice, the number of categories reduces from
5,896 to 2,085 when frequency threshold is set to 50.

We validated this hypothesis by manually reviewing 600
queries with multi-label category pairs and observed that
24.8% were partially incorrect (i.e., included a correct sub-
sequence of breadcrumb nodes) or controversial (i.e., the
matching category was consistently wrong in the catalog).
For instance: laptops like “lenovo t 420 thinkpad 12 GB”
are consistently mapped to Computers — Computer Sys-
tems — Mobile while the rest correctly map the query to a
valid set of categories. We also observed, that depending on
the level of specificity for the query, the same query could be
categorized with more than one taxonomy label.
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Fig. 1: A part of the entire product taxonomy. The number
below each node is the sum of click frequencies of all the
queries associated to that node. The dotted line shows the
pruning boundaries based on a threshold of 50.

C. Data Characteristics

We collect 403,349 queries labeled over 2,085 categories
and partitioned the obtained corpus into training and test sets
with a 3:1 split. Each query may be tagged with more than
one category and the average number of labels per query in
the training set is 1.4. Being one of the challenges of QC,
it is not surprising that 48% of the queries has less than or
equal to 2 words and 93% of them has less than or equal to
5 words. Fig. 2 shows the percentage distribution of queries
with different length in training set.

The product taxonomy has 36 categories at level one. The
maximum depth of the tree is 7 and the average depth is 3.37.
As shown in Fig. 3 (left), queries are unevenly distributed
among these 36 top level categories. 23% of the queries fall
in the largest category (Computers) while only less than 0.01%
of the queries fall in the smallest one (Hair Jewelry).

III. METHODS

Given a web query, query classification can be modeled as a
text classification task where the objective is to find a category
or top n categories. To address this task, we experiment with
several text classifiers including logistic regression, SVMs,
Gradient Boosting Trees (GBTs?), fast Text?, and attention-
based CNNs [17].

Zhttps://github.com/dmlc/xgboost
3https://github.com/facebookresearch/fastText
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Fig. 3: Percentage of queries among 36 level-1 categories in
the training set.

A. GBTs

In the predictive learning problem, the goal is to find an
approximation F' (x) of the function F™* (x) that maps a set
of input x = {x1,...,2,} to a label y, and, at the same
time, minimizes a specified loss function using N training
data {z;, yl}f\il [6]. Gradient Boosted Trees, GBTs, seeks to
minimize the following loss function:

L=Ey[L(y, F(x))x] (D

where F'(z) can be any function, such as a decision tree.
Following the numerical optimization paradigm and additive
strategy, the optimal solution can be expressed as:

2

where fy (x,a,w) is the initial guess and 2%:1 fm (X,2,W)
are the incremental boosts on x, while a and w can be viewed
as split points of predictors and boosting weight on the leaf
nodes, respectively.

B. fastText

fastText is an open source library for efficient learning
of word representations and sentence classification. It has
been shown to have classification accuracy on par with deep
learning classifiers, such as the character level convolutional
model (char-CNN) [18], the character based convolutional

recurrent network (char-CRNN) [16] and very deep convo-
Iutional network (VDCNN) [3] with significant speed-up in
both training and testing phase.

Each input sentence x1xs...xy is represented as [N bag of
n-gram features to capture some partial information about the
local word order. The features are embedded and averaged to
form the hidden variable. A SofMax function is then applied
to compute the probability distribution over the target classes.

C. Attention-Based CNNs

Attention mechanism allows a neural network text classifi-
cation model to “attend” to different parts of the input. In other
words, each input unit, which could be a character or a word, is
of different importance from the model’s perspective according
to the learned attention weights. Hierarchical Attention Net-
works [17], which has two levels of attention mechanism, is
currently the state-of-the-art classifier for document classifica-
tion. Its two-level architecture is capable of learning deep word
representation (word encoder) and sentence representation
(sentence encoder), respectively.

Different from Hierarchical Attention Networks, we imple-
ment an Attentional CNN model that was shown to achieve
best accuracy in a large-scale product title classification
task [15]. Instead of employing two-level attention structure,
we first use an attention module as a context encoder to learn
the representation of input sentence. Secondly, the output of
the previous module then serves as the context vector in a
second attention module that is followed by a fully connected
layer and softmax layer to predict the output class.

IV. EXPERIMENTS AND RESULTS

In the query classification experiments, we considered two
different settings: single-label and multi-label classification.
For the former, we removed from the data sets the queries with
more than one label to eliminate the ambiguity. This lowered
the training set to 234,157 queries and testing set to 78,053
queries. The number of labels also reduces to 1,406. For the
latter, as mentioned previously, the training set is comprised
of 302,511 queries and the test set of 100,838 queries with
2,085 targeted categories.

For logistic regression, SVMs and XGBoost, several fea-
tures are extracted both at the tokenized word level and
character level. We use counts of word uni-gram and bi-gram
together with TF-IDF of word uni-gram and bi-gram at word
level. For character-level, we extract from uni-gram to 4-grams
along with their frequency counts. No feature engineering is
required for fast Text and Attentional CNN where the input
are raw text. The initial word representation for Attentional
CNN is obtained by training word2vec* on the catalog
product titles of clicked product associated with all the queries
in the training data. Hyper-parameter tuning is conducted by
using 5-fold cross validation on training set.

“https://www.tensorflow.org/tutorials/word2vec



A. Single-Label QC

Table I shows the best micro-F1 score for each text classifier
at different prediction levels. Note that only one time leaf
level prediction is performed per classifier. The evaluation at
different level is based on taking into consideration only top
k levels from the entire breadcrumb path.

Both multi-class LR and SVM are trained in 1-vs.-all
manner to avoid O (ng) model complexity where n is number
of classes. For logistic regression, the best micro-F1 score
is achieved when regularization strength C' = 1.0 with L,
penalty. For SVMs, linear kernel with squared hinge loss
and penalty parameter C' = 0.1 has 0.58 leaf level micro-
F1 and 0.78 level-1 micro-F1, which is the highest among all
classifiers. Additionally, they are significantly higher compared
to other algorithms using the Friedman test [5] with a p-value
< 0.0001. XGBoost is trained with softmax objective function
and allowed to grow to a maximum depth of 1,000. Initial
learning rate is set to 0.3 and the number of boosting rounds
is 50.

For fastText, the size of word vectors is set to 200 and
learning rate is assigned a value of 0.1. The maximum length
of word n-grams is 2 and minimal number of word occurrences
is 1. The micro-F1 score converges after 200 epochs. For
attention-based CNNs, we use an initial word and character
embedding with dimension of 300. Filter sizes are set to 1, 2,
3 and 2, 3, 4 for the word and character convolutional layer,
respectively. The size of the first hidden layer is 2,400, which
is the value of the number of filter sizes times number of filters,
400. A dropout probability of 0.5 is applied to this layer. The
second hidden layer, followed by softmax, is of size 1500 and
cross entropy loss is used for optimizing the parameters.

TABLE I: Best micro-F1 score of multi-class single-label LR
(logistic regression), SVMs, XGBoost, fastText and Atten-
tional CNN classifier at different levels.

level LR SVM  XGBoost fastText ~ACNN
1 0.74  0.78 0.66 0.68 0.71
2 0.64 0.68 0.55 0.52 0.61
3 0.58 0.63 0.49 0.46 0.55
4 0.55 0.59 0.46 0.42 0.51
5 0.55 0.59 0.45 0.41 0.50

leaf 0.54  0.58 0.44 0.41 0.49

Linear SVMs have the highest micro-F1 score in single-
label QC setting. One possible reason could be related to the
large feature space (727,405 dimensions), which is three times
larger than the number of training instances (234,157 queries),
but also sparse. In such scenario, a linear kernel would be
enough to achieve high accuracy and there may not be need
to map data to a higher dimensional space. This make linear
SVMs an ideal classifier for query classification. On the other
hand, although logistic regression is robust to small noise in
the data (via Lo regularization), it is not suitable for handling
large number of features. Other than the feature sparsity and its
high dimensionality, the highly imbalanced nature of QC data,
as shown in Fig. 3 (right), might explain the weak performance
of XGBoost. Deep learning based models, e.g., fastText

and Attentional CNN, do not achieve high micro-fl score as
described in other tasks, such as document classification and
sentiment analysis, just to name a few, where the input to
the model are usually longer text compared to queries. This
fundamental challenge severely limits the power of neural
networks in the QC domain. °

Intuitively, for text classification task, the longer the input
text is, the more information a classifier can learn from. As
a consequence, to understand how query length affects the
performance of a text classifier, we further investigate the
micro-F1 score of the best classifier from Table I, i.e., SVMs,
by filtering out queries whose length are less than a specific
threshold. The first row in Table II indicates the value of
filtering threshold. A threshold = 1 means all the queries with
length less than or equal to 1 are discarded from the data set.
micro-F1 score of every level unsurprisingly increases as we
raise the threshold, which verifies the challenge of short query
length in query classification.

TABLE II: micro-F1 for multi-class single-label SVMs clas-
sifier (1 v.s.all) at different levels and query length thresholds.

query length threshold 0 1 2 3 4
# of queries 78,053 69,243 43227 23,892 11,198

level micro F1 score
1 0.78 0.80 0.82 0.85 0.87
2 0.68 0.70 0.73 0.76 0.78
3 0.63 0.65 0.68 0.71 0.74
4 0.59 0.62 0.64 0.67 0.69
5 0.59 0.62 0.64 0.66 0.69

leaf 0.58 0.60 0.62 0.64 0.67

B. Multi-label QC

Compared to the single-label query classification setting,
multi-label classification is more challenging yet closer to
real world applications. Instead of predicting 1 out of n
categories for each query, the model is expected to predict
l out of n categories where 1 < [ < n and [ varies from
query to query. Based on the result from previous single-
label experiments, we choose the best classifier, i.e., linear
SVMs, as the main classifier and report its micro-precision,
micro-recall and micro-F1 in Table III. To tackle multi-label
query classification problem, in practice, each class is treated
as an independent category. Therefore, n 1-vs.-all classifiers
are trained where n is the number of classes and parameter
tuning is conducted within each class. This method achieves
0.70 micro-F1 at top level and 0.51 micro-F1 at leaf level.

Theoretically, a multi-label classifier may predict zero num-
ber of label ®, which causes harm to recall. This explains why
micro-recall is much lower than micro-precision in the left
column of Table IIl. To mitigate the low recall issue, when
no label is predicted, we fall back to the single-label model
trained in section IV-A and adopt its prediction outcome. By

5In [10], the average length of most dataset lies between 10 and 23. The
complexity of classification experiments is much less owing to only a few
classes in each instance instead of thousands in our case.

6This happens when all the predicted probabilities of n classifiers are below
the decision threshold.



TABLE III: micro-Precision, micro-Recall and micro-F1 score
of multi-label SVMs classifier and ensemble SVMs classifier
(multi-label plus single label) at different tree depth levels.

multi-label multi-label +

SVMs only single label SVM
level P R Fl1 P R Fl1
1 0.84 0.61 0.70 0.84 0.81 0.82
2 073 052 0.1 074 0.69 0.71
3 0.67 048 0.56 0.68 0.62 0.65
4 0.63 045 0.52 0.64 0.58 0.61
5 062 044 052 0.63 057 0.60

leaf 0.62 044 0.51 0.63 0.57 0.60

simply ensembling both multi-label and single-label models,
micro-recall is largely increased because the aforementioned
zero label scenario no longer exists. As shown in the right
column of Table III, for top level, micro-Recall improves from
0.61 to 0.81 (+33%) and micro-F1 from 0.70 to 0.82 (+17%)
accordingly. For leaf level, micro-Recall has a +30% gain
from 0.44 to 0.57 and micro-F1 has a +18% gain from 0.51
to 0.60.

V. CONCLUSION AND FUTURE WORK

Lack of training/testing data due to costly human annotation
along with short and ambiguous queries are the two main
challenges in query classification. This paper introduces an
unsupervised way to collect a large amount of data from
users’ implicit click feedback in a e-commerce domain, re-
sulting in 403,349 queries and 2,085 categories. Furthermore,
we compare several state-of-the art text classifiers on two
different settings, single-label and multi-label. Experimental
results show that linear SVMs are suitable for QC while deep
learning models suffer due to the short nature of queries in
this task, which limits neural network’s abilities to learn deep
representations. An interesting future research direction is to
incorporate query expansion methods to enrich short queries
or take context information into account [1]. Another direction
is to integrate the query classification module into online
commercial search engine and conduct A/B testing to measure
quantitatively how it affects ranking metric such as NDCG @k
of real word product search. Moreover, the authors also look
forward to making this dataset publicly available and providing
the linear SVMs classifier as a baseline model.
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